博客
关于我
HDFS
阅读量:180 次
发布时间:2019-02-28

本文共 586 字,大约阅读时间需要 1 分钟。

随着全球经济的不断发展,大数据时代早已悄悄到来,而Hadoop又是大数据环境的基础,想入门大数据行业首先需要了解Hadoop的知识。2017年年初apache发行了Hadoop3.0,也意味着一直有一群人在对Hadoop不断的做优化,不仅如此,各个Hadoop的商业版本也有好多公司正在使用,这也印证了它的商业价值。

读者可以通过阅读“一文读懂Hadoop”系列文章,对Hadoop技术有个全面的了解,它涵盖了Hadoop官网的所有知识点,并且通俗易懂,英文不好的读者完全可以通过阅读此篇文章了解Hadoop。

本期独家内容“一文读懂Hadoop”系列文章将根据先介绍Hadoop,继而分别详细介绍HDFS、MAPREDUCE、YARN的所有知识点的框架,分为四期内容在近几天推送。敬请关注后续内容。

本期内容为大家详解HDFS,由于字数限制,本文分为上下两篇分别在头条和二条推送。

1. HDFS优缺点

1.1 优点

1.1.1 高容错性

可以由数百或数千个服务器机器组成,每个服务器机器存储文件系统数据的一部分;

数据自动保存多个副本;

副本丢失后检测故障快速,自动恢复。

1.1.2 适合批处理

移动计算而非数据;

数据位置暴露给计算框架;

数据访问的高吞吐量;

运行的应用程序对其数据集进行流式访问。

1.1.3 适合大数据处理

典型文件大小为千兆字节到太字节;<

转载地址:http://xtmn.baihongyu.com/

你可能感兴趣的文章
MySQL一站到底!华为首发MySQL进阶宝典,基础+优化+源码+架构+实战五飞
查看>>
MySQL万字总结!超详细!
查看>>
Mysql下载以及安装(新手入门,超详细)
查看>>
MySQL不会性能调优?看看这份清华架构师编写的MySQL性能优化手册吧
查看>>
MySQL不同字符集及排序规则详解:业务场景下的最佳选
查看>>
Mysql不同官方版本对比
查看>>
MySQL与Informix数据库中的同义表创建:深入解析与比较
查看>>
mysql与mem_细说 MySQL 之 MEM_ROOT
查看>>
MySQL与Oracle的数据迁移注意事项,另附转换工具链接
查看>>
mysql丢失更新问题
查看>>
MySQL两千万数据优化&迁移
查看>>
MySql中 delimiter 详解
查看>>
MYSQL中 find_in_set() 函数用法详解
查看>>
MySQL中auto_increment有什么作用?(IT枫斗者)
查看>>
MySQL中B+Tree索引原理
查看>>
mysql中cast() 和convert()的用法讲解
查看>>
mysql中datetime与timestamp类型有什么区别
查看>>
MySQL中DQL语言的执行顺序
查看>>
mysql中floor函数的作用是什么?
查看>>
MySQL中group by 与 order by 一起使用排序问题
查看>>