博客
关于我
HDFS
阅读量:180 次
发布时间:2019-02-28

本文共 586 字,大约阅读时间需要 1 分钟。

随着全球经济的不断发展,大数据时代早已悄悄到来,而Hadoop又是大数据环境的基础,想入门大数据行业首先需要了解Hadoop的知识。2017年年初apache发行了Hadoop3.0,也意味着一直有一群人在对Hadoop不断的做优化,不仅如此,各个Hadoop的商业版本也有好多公司正在使用,这也印证了它的商业价值。

读者可以通过阅读“一文读懂Hadoop”系列文章,对Hadoop技术有个全面的了解,它涵盖了Hadoop官网的所有知识点,并且通俗易懂,英文不好的读者完全可以通过阅读此篇文章了解Hadoop。

本期独家内容“一文读懂Hadoop”系列文章将根据先介绍Hadoop,继而分别详细介绍HDFS、MAPREDUCE、YARN的所有知识点的框架,分为四期内容在近几天推送。敬请关注后续内容。

本期内容为大家详解HDFS,由于字数限制,本文分为上下两篇分别在头条和二条推送。

1. HDFS优缺点

1.1 优点

1.1.1 高容错性

可以由数百或数千个服务器机器组成,每个服务器机器存储文件系统数据的一部分;

数据自动保存多个副本;

副本丢失后检测故障快速,自动恢复。

1.1.2 适合批处理

移动计算而非数据;

数据位置暴露给计算框架;

数据访问的高吞吐量;

运行的应用程序对其数据集进行流式访问。

1.1.3 适合大数据处理

典型文件大小为千兆字节到太字节;<

转载地址:http://xtmn.baihongyu.com/

你可能感兴趣的文章
mysql 编译安装 window篇
查看>>
mysql 网络目录_联机目录数据库
查看>>
MySQL 聚簇索引&&二级索引&&辅助索引
查看>>
Mysql 脏页 脏读 脏数据
查看>>
mysql 自增id和UUID做主键性能分析,及最优方案
查看>>
Mysql 自定义函数
查看>>
mysql 行转列 列转行
查看>>
Mysql 表分区
查看>>
mysql 表的操作
查看>>
mysql 视图,视图更新删除
查看>>
MySQL 触发器
查看>>
mysql 让所有IP访问数据库
查看>>
mysql 记录的增删改查
查看>>
MySQL 设置数据库的隔离级别
查看>>
MySQL 证明为什么用limit时,offset很大会影响性能
查看>>
Mysql 语句操作索引SQL语句
查看>>
MySQL 误操作后数据恢复(update,delete忘加where条件)
查看>>
MySQL 调优/优化的 101 个建议!
查看>>
mysql 转义字符用法_MySql 转义字符的使用说明
查看>>
mysql 输入密码秒退
查看>>